TAU-SAT1 – First Miniature Satellite Built on Tel Aviv U Campus – Orbiting Earth

Martian satellite captures rover parachuting through Mars’ atmosphere
2021-02-21
Can Mass Self-Testing for Covid-19 Keep Schools Safe?
2021-02-21
Show all

TAU-SAT1 – First Miniature Satellite Built on Tel Aviv U Campus – Orbiting Earth

Photo Credit: YouTube

The launch of Nanosatellite TAU-SAT1, Feb. 20, 2021.

TAU-SAT1, Tel Aviv University’s first nanosatellite, launched into orbit on Saturday at 7:36 PM Israel time, from the NASA launch facility in Virginia. TAU-SAT1 will conduct several experiments while in orbit, including the measurement of cosmic radiation around the earth.

[embedded content]

Advertisement



<!–

Publisher #16: JewishPress.com
Zone #113: Comment Banner / (02) / News
Size #15: Banner 468×60 (Comments and Mobile) [468×60]
–>


TAU scientists are excited about the remarkable scientific and technological achievement, noting that the nanosatellite is the first to be wholly designed, developed, assembled, and tested at an Israeli university. The work was done at the Center for Nanosatellites, an interdisciplinary endeavor of the Iby and Aladar Fleischman Faculty of Engineering, the Porter School of the Environment and Earth Sciences at the Raymond, and the Beverly Sackler Faculty of Exact Sciences and the Soreq Nuclear Research Center.

TAU completed the construction of TAU-SAT1 about four months ago, sending it for pre-flight testing at the Japanese space agency JAXA. About two weeks ago, the nanosatellite arrived at its final destination before liftoff, Wallops Island in Virginia, USA – where it caught a ride on a NASA supply spacecraft destined for the International Space Station (ISS).

The team the built TAU-SAT1, Tel Aviv University’s first nanosatellite. / Tel Aviv University

“It’s a big day for TAU,” said Prof. Colin Price, head of the Porter Department of Environmental Studies. “We have now joined the ‘Civil Space Revolution,’ known as New Space, in which, unlike the Old Space, not only giant companies with huge budgets and large teams of engineers can build and launch satellites.”

“A few years ago we established the Center for Nanosatellites, with the goal of building small ‘CubeSat’ for research purposes. Since then we were able to prove that with the right planning, miniaturization, and modulation of many technologies, small satellites can be built and launched into space within two years by students, at a fraction of the budget needed in the Old Space,” Prof. Price said.

“This is a nanosatellite, or miniature satellite, of the CubeSat variety,” explained Dr. Ofer Amrani, head of Tel Aviv University’s Miniature Satellite Lab. “The satellite’s dimensions are 10 by 10 by 30 cm, and it weighs less than 2.5 kg. TAU-SAT1 is the first nanosatellite designed, built, and tested independently in an Israeli university by researchers and students.”

Dr. Meir Ariel, Director of TAU’s Center for Nanosatellites, said: “We know that high-energy particles are moving through space that originate from the sun’s cosmic radiation. Our scientific task is to monitor this radiation and to measure the flux of these particles and their products. It should be understood that space is a hostile environment, not only for humans but also for electronic systems. When these particles hit astronauts or electronic equipment in space, they can cause significant damage. The scientific information collected by our satellite will enable the design of protective means for astronauts and space systems. To this end, we incorporated into the satellite several experiments, developed by our partners at SNRC’s Space Environment Department, who will also conduct the relevant scientific research.”

Another challenge that presented itself was how to extract the data collected by the TAU-SAT1 satellite. At an altitude of 400 km above sea level, the nanosatellite will orbit the earth at a dizzying speed of 27,600 km per hour, or 7.6 km per second, completing a cycle around Earth every 90 minutes.

“To collect data, we built a satellite station on the roof of the Engineering building,” said Dr. Amrani. “Our station, which also serves as an amateur radio station, includes several antennas and an automated control system. When TAU-SAT1 passes over Israel, that is, within a radius of a few thousand kilometers from the ground station’s receiving range, the antennas will track the satellite’s orbit and a process of data transmission will occur between the satellite and the station. Such transmissions will take place about four times a day, with each one lasting less than 10 minutes. In addition to its scientific mission, the satellite will also serve as a space relay station for amateur radio communities around the world. In total, the satellite is expected to be active for several months. Because it has no engine, its trajectory will fade over time as a result of atmospheric drag – and eventually, it will burn up in the atmosphere and come back to us as stardust.”

TAU researchers are already aiming for their next target – TAU-SAT2: “We built the infrastructure for developing TAU-SAT1 on our own – from the cleanrooms, through the various testing facilities such as the thermal vacuum chamber, to the receiving and transmission station we placed on the roof. Now that the infrastructure is ready, we can begin to develop TAU-SAT2. The idea is that any researcher and any student, from any school at Tel Aviv University, or outside of it, will be able to plan and launch experiments into space in the future – even without being an expert on space.”

Advertisement








Leave a Reply

Your email address will not be published. Required fields are marked *